Nanotechnology is a rapidly emerging field. There are currently over 500 consumer products available in the marketplace and the field of nanotechnology itself will be worth over 1 trillion dollars by 2012. However, with an increasing number of products emerging there is also a consequent rise in ecological and human exposure. The risk and degree of exposure to nanoscale particles will vary depending on the form of the particle, for example, powder, liquid or encapsulated, when contact occurs. Although, general public exposure to nanoscale particles is increasing due to the sheer number of products available, the majority of human exposure still occurs in an occupational setting. Preliminary exposure studies demonstrate that nanoscale particles may enter the body via the gastrointestinal, respiratory and integumentary systems and then translocate to other vital organs and systems (for example via the olfactory bulb). Historical data on ultrafine particles have shown a higher incidence of lung cancer and respiratory disorders associated with exposure. Due to these data and evidence emerging directly on nanoscale particles, precautionary measures may be warranted to ensure worker safety. Regulatory agencies and manufacturers are beginning to consider standard practices that adequately protect workers from nanoscale particle exposure. The occupational hazards associated with exposure and the current safety recommendations will be discussed.

KEY EXPOSURE SITES
1. Respiratory Tract
2. GastroIntestinal Tract
3. Integumentary System

ENVIRONMENTAL HEALTH AND SAFETY PLANS
1. Guideline Documents
2. Risk Assessment Approaches
3. EHS plans based on Fine/Ultrafine Particles
4. Monitoring Actual Exposure to NP

HydroQual Laboratories Ltd. (HydroQual), a wholly owned subsidiary of Golder Associates Ltd., does applied biology for environmental management. We use living organisms to assess environmental quality (effects testing for environmental assessment). The company is divided into eight operating groups: water, water quality, aquatic habitat restoration, air, soil, applied science, product testing and corporate services. We offer a broad range of routine biological tests (commodity testing services) and custom tests on a demand basis (technical consulting with testing). Our clients are consultants, general public, government, and industry. We are accredited by the Canadian Association of Environmental and Analytical Laboratories (CAEAL) to an ISO 17025 standard and the American Industrial Health Association (AIHA) in the Environmental Microbiology Laboratory Accreditation Program (EMLAP) and recognized by the United States Environmental Protection Agency (US EPA).

Nanotechnology falls into our product testing group for regulatory compliance. There is often little to no environmental fate and effects data on nanoparticles. This information is now being required under legislation in the US (HPV Testing), Canada (New Substances Act), and in Europe (REACH). Manufacturers must conduct testing as defined by the volumes consumed in their processes and submit the information to the government. Existing tests are intended for conventional materials and may not be appropriate for nanoparticles. We are currently evaluating conventional testing procedures for assessing the environmental fates and effects of nanoparticles. We also welcome the opportunity to validate existing and new methods.

Public safety and environmental protection are important and shared obligations of proponents and regulators in any industry. The risk assessment framework provides one tool that can be used effectively to organize information that can be useful to foster informed dialogue and to assist in making critical decisions. There is growing recognition of the need for risk assessments of nanoscale particles. Golder is applying its considerable expertise in risk assessment, product safety testing, and environmental assessments to assist clients to evaluate the risks associated with production and use of nanoscale particles. We are exploring the special requirements for assessing risks of nanoscale particles pertaining to fate, hazard, and exposure in terrestrial and aquatic environments for all phases of product use.

AFFILIATIONS

Sylvia Chan Remillard, Ph.D., FICN. Environmental Scientist/Alberta Ingenuity Industry R&D Associate
- Fellow of the International College of Nutrition
- Member of the SETAC Nanotechnology Advisory Group Workstream 5: Risk Framework
- Member of ASTM Committee on Nanotechnology (E56)
- Member of ASTM Committee on Biological Effects and Environmental Fate (E47)
- Member of the SRA Ecological Risk Assessment Committee
- Member of the SRA Emerging Nanoscale Materials Committee
- Chair of Assessment of Nanotechnology Technical Session for the North American Lake Management Society 28th International Symposium of NALMS
- Executive Member of the Alberta Soil Science Workshop
- Chair of SETAC Nanotechnology Advisory Group Workstream 5: Risk Framework
- Member of the SETAC Nanotechnology Advisory Group Workstream 4: Ecotoxicology
- Chair ASTM International Committee on Biological Effects and Environmental Fate (E47)
- Member of ASTM International Committee on Nanotechnology (E56)

Larry Kapustka, Ph.D. Senior Ecotoxicology, Associate.
- Member of the SETAC Nanotechnology Advisory Group Steering Committee
- Chair of SETAC Nanotechnology Advisory Group Workstream 5: Risk Framework
- Member of SETAC Nanotechnology Advisory Group Workstream 4: Ecotoxicology
- Chair ASTM International Committee on Biological Effects and Environmental Fate (E47)
- Member of ASTM International Committee on Nanotechnology (E56)

- Member of the SETAC Nanotechnology Advisory Group Workstream 5: Ecotoxicology
- Member of ASTM International Committee on Biological Effects and Environmental Fate (E47)

PUBLICATIONS

- From micro to Nano. Public Works October: 54-44.

PRESENTATIONS